Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Significance African trypanosomes are parasites that can cause African sleeping sickness in humans. Humans and some primates, but not other mammals, have a gene called APOL1 that protects against certain trypanosomes. Genetic variants in APOL1 that arose in Africa are strongly associated with kidney disease in African Americans. These kidney disease-associated variants may have risen to high frequency in Africa because they can defend humans against a particularly pathogenic trypanosome. In this paper, we show how APOL1 has evolved by analyzing the distribution of these variants in Africa and then elucidating the molecular mechanisms that enhance their trypanosome killing capacity. We also show that these antitrypanosomal APOL1 variants may have adverse consequences for the host.

Original publication

DOI

10.1073/pnas.1400699111

Type

Journal article

Journal

Proceedings of the National Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Publication Date

20/05/2014

Volume

111